Learn

Behind
Quantum

How It
Works

Quantum annealing begins with the traveler simultaneously occupying many coordinates thanks to the quantum phenomenon of superposition. The probability of being at any given coordinate smoothly evolves as annealing progresses, with the probability increasing around the coordinates of deep valleys. Quantum tunneling allows the traveller to pass through hills—rather than be forced to climb them—reducing the chance of becoming trapped in valleys that are not the global minimum. Quantum entanglement further improves the outcome by allowing the traveler to discover correlations between the coordinates that lead to deep valleys.

A unique vision

Capabilities

To speed computation, quantum computers tap directly into an unimaginably vast fabric of reality—the strange and counterintuitive world of quantum mechanics. Rather than store information using bits represented by 0s or 1s as conventional computers do, quantum computers use quantum bits, or qubits, to encode information as 0s, 1s, or both simultaneously. This superposition of states, along with the quantum effects of entanglement and quantum tunneling, enable quantum computers to consider and manipulate many combinations of bits simultaneously.